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PERIODIC SOLUTIONS OF A LOGISTIC
DIFFERENCE EQUATION*

F. C. HOPPENSTEADT AND J. M. HYMANt

Abstract. Periodic solutions of the difference equation xn+ mxn (1-x) are studied for values
of m, 0 _-< m -< 4. It is shown that as m increases from zero, solutions having successively higher periods
branch from old ones until the value m 3.57 is reached, after which there is an infinity of periodic
solutions. The solution set is said to be chaotic if there is an infinity of periodic solutions.

This investigation focuses on solution behavior in the chaotic regime. It is shown how as m
increases from m, solutions having various other periods are added to the solution set until at m 3.83,
solutions of period three, and hence all periods are present. Finally, density functions are calculated
numerically to describe the dynamics of solutions in portions of the chaotic regime.

1. Introduction. The difference equation

(1) Xn+l=mxn(1-x,)

arises in models of population dynamics as a discrete-time version of the logistic
equation and as an approximation to a nonlinear renewal equation. For example,
a nonlinear renewal equation for birth rate,

B(t)=(m/tz) B(t+s)[1-B(t+s)]+ds,

was derived in [8] as a model of a population having a density dependent
maternity function ((rn//.,)[1-B]+) and having a high fertility (m/l) over a short
reproductive window (i.e., for rescaled ages 1--<a-< 1). The equation (1)
results on passing to the limit/ 0. Equation (1) and similar equations have
appeared in many different contexts, and their solutions have been the subject of
many investigations. Even though (1) is one of the simplest nonlinear difference
equations, its solutions exhibit a wide range of interesting dynamic behavior. In
this note, we will describe the periodic solutions of (1) by means of simple
geometric arguments and numerical computations.

Attention is restricted here to solutions of (1) lying in the unit interval. In fact,
for any initial value lying in the unit interval, the corresponding solution of (1) will
satisfy 0 _-< xn _-< 1 provided 0 rn 4. Therefore, we consider (1) only for values of
m satisfying 0 -< rn -< 4.

Instead of studying equation (1), we consider an equivalent problem of
analyzing iterates of the function f(x)= rex(l-x). For n 2, 3, 4,. -, we set
f"(x)=f[f"-l(x)]. Thus, (1)is equivalent to x,+t =[(x,) ["+l(x0).

A point x will be a ]-period solution (or point) of (1) if it has least period ]; i.e.,
iff (x) x, butfk (x) # x for k 0,. , ] 1. The orbit of a]-period point is the set

O(x) {x, f(x), .,
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The solution set of (1) is called chaotic if there is an infinity of periodic solutions
having distinct periods.

2. Analysis of the solution set of (1).
2.1. 0<=m<m8 "- 3.54. Solutions of (1) for these values of m are easily

described by explicit calculation. For 0 =< m =< 1, x 0 is the only periodic solution,
and all points in [0, 1] approach zero under iterations of f. For 1 < rn -< 3, there is
another one-period solution, x Yl =- (m- 1)/m. It is stable in that all points in
(0, 1) approach Y under iterations of f. These stability properties are easily
established by a geometric argument described, for example, in [1].

There is a two-period point Y2 which branches from yl at rn 3. It is stable in
that all but countably many points in [0, 1] evolve into O(y2). The solutions x 0
and x y are unstable for rn > 3. As rn passes through a value m4 3.44, a
solution of period four branches from y2. Again an exchange of stabilities occurs,
and Y4 is stable on an interval m4 < rrt < ms. These results are described in Fig. 1.
At this point, explicit calculations become less interesting, and we proceed by
other methods to describe the solutions.
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FIG. 1. The periodic solutions of (1) are plotted here for values of rn [2.9, 3.57]. Stable branches
are labeled S and unstable ones U. The periodic solutions ]’or m m are contained in the intervals
If(m/4), ]’3(m/4)] and [f2(m/4), n/4].
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2.2. ms<=m<-4. Certain maxima of iterates of f can be easily found. The
function f2(x) has two maxima. We denote the larger one by x2(m), and it lies in
the interval (Yl, 1). Thus, f2(x2(m)) m/4. This function is plotted in Fig. 2, which
shows that there is a unique value of m for which x2(m)= m/4. This value is
denoted by m2 3.24. In addition, we let x 2* denote the unique value of x (y 1, 1)
such that f2(x*)= Yl. (See Fig. 3.)

1.00

.9O

.80

.7O

.6O

x x3(m)

x x(m) ..._..........................X

x m/4

m2 3.24 m 3.49 m 3.67 m3 3.83

.50
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

FIG. 2. This contains some technical information used in the text.

For m >m2, a polygonal path P joining Y to f(x2) can be constructed as
shown in Fig. 3. By reflecting the horizontal segments of P into f 2 and f3,
respectively, we find monotone sequences{xk2k } and {x2k+l} approaching x from
the left and right respectively. Moreover,f2 (x2) m/4 and f2+l(x2+l) m/4
for k 1, 2, . The function x3(m) is also plotted in Fig. 2, and we let m3 denote
the value of m for which x3(m)= m/4.

It follows from the intermediate value theorem that if xl(m)<-_ m/4, then ft
has a fixed point (i.e., the graph offl(x) crosses the line i(x) x) at some value in
the interval xt(m) <-x < 1. In addition, if x is a fixed point of fP and has period q,
then q divides p. If this were not the case, we could write p kq + r for some
integers k and r, 1 -< r =< q 1. Then

x f (x) f’(x),
and so x has period r <q. This contradiction shows that r- 0 and that p is a
multiple of q.

We will now use the fact established in [2] that the existence of a solution of
period three implies the existence of solutions having all periods.

Let m2* denote the value of m such that xz*(m)= m/4. It follows that for
m -> m z*, the numbers x2 (m), k 1, 2,. , satisfy xzk < m/4. Since x6 < x 2", there
is a value m6 such that x6 < m/4 for m > 1116. Thus, for m > m6, f:z.3 has a fixed
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FIG. 3. For m > mz 3.24, the polygonal path Pcan be drawn connecting (x2, m/4) with (Yl, Yl).
The horizontal segments ofP are reflected in f2 andf giving sequences {Xzk} and {XZk+l}, respectively,
which converge monotonicqlly to x. These points define maxima for the corresponding iterates off. In
particular, for one of these points x,, the function f" satisfies f" (x,,) m/4.

point. Since this point cannot have period two or period three, this implies that f 2

has a fixed point of period three, and so (1) has solutions of all even periods for
m>-m6.

As m increases from m6 to m3, solutions having successively lower odd
periods are added to the solution set until a value m3 <m3 is reached when
solutions of period three arise, and hence solutions of all periods are present.

Finally, we focus attention on the interval m8 < m < m’. First, consider f4.
Since x4(m)<x*2(m), there is a value m4 such that x4(m) m/4 for m -m4. The
construction of a polygonal path P2 can be carried out also forf4 when m > m4. In
particular, there is a point x4* (Y2, x2*) such thatf4(x4*) y2 for m ->m4, and there
are monotone sequences {4k } and {:4k/1} converging to x4* from the left and right,
respectively, and having properties similar to those of {X2k } and {X2k /1}. We define
ran* to be the value of m for which x4* m/4; (m*4 3.6). For m --> m4*, there is a
solution of period 4k for each prime number k. In particular, there is a solution of
period 4"3. Therefore, f4 has a three-period point, and so (1) has solutions of all
periods of the form 4k provided m _-> m4*.

This construction can be continued with the results being sequences {m2} and
{m*,} which satisfy

m2<m4<m8<’’’ <m<m*a <m*2.
We define m= lim (l )m2*,. Our calculated values show that m-" 3.57.



PERIODIC SOLUTIONS 77

By/the arguments given above, for rn _-> rn ,, solutions having all periods of the
form 2 k exist for all k 1, 2, 3, . This shows that the solution set is chaotic for
rn >m and that in plays the role of a threshold of chaos.

3. Numerical description of the solution set of (I). In an effort to gain a
clearer description of the structure of the chaotic solution set, we calculated
frequency distributions of iterates of f. These demonstrate several interesting
phenomena.

The calculations were performed by iterating 500 times each of 100 points in
(0, i), and then counting the number of iterates which entered each of i000 cells.
Some sample calculations are described in Figs. 4-7. In these, q(x) measures the
number of iterates after the first 50 which entered the cell which contains x. For
each rn in the interval 0 _-< rn _-< m, there were only finitely many peaks, they were
quite sharp, and they were located over the stable orbit corresponding to the
particular choice of m. In the terminology of ergodic theory, these reflect an
invariant measure whose density function is an appropriate linear combination of
delta functions with support on the particular periodic points.

The calculations described in Figs. 4-7 were carried out for several values of
rn in the chaotic regime. First, the sensitivity of density functions to changes in m
is illustrated for values of rn near the critical point rn3. For m 3.825, the
solutions migrate under iterates of f in a chaotic way, and the calculation of q
suggests that there is a regular (with respect to Lebesgue measure) density
function which describes the dynamics of the solutions. For rn 3.83, the solu-
tions are converging to the solution of period three, and the solution set appears to

Logoq(x)

3.50

3.00

2.50

2.00

1.50

m 3.825

x

FIG. 4. The numerical calculation described in the text gives this distribution for m 3.825. 0(x)
measures the number of 500 iterates of each of O0 points in (0, 1) which entered the cell containing x.
Here loglop(x) is plotted. Points migrate according to some regular invariant measure whose density
function has its graph reflected here.
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FIG. 5. The sensitivity of density functions to changes in rn is strikingly demonstrated here. rn has
been increased 0.005 from Fig. 4, and the results are radically different. Figure 5 shows that almost all
points x approach the stable three-period solution.

be quite regular. As m increases from rn 3.83, another heirarchy of bifurcations
occurs with stable six-period, twelve-period, etc., points arising. This is illustrated
in Fig. 6 where the density function is calculated for rn 3.845. It indicates that a
solution of period six has bifurcated from the solution of period three. Of course, it
is stable. Finally, the calculation at m 4 gives a distribution which reflects the
known density function which is proportional to Ix(l-x)]-1/2. This calculation
also gives some idea of the variance of our simulation of solutions to (1).

4. Discussion. Equation (1) arises in various models of physical phenomena
and population biology. While it may be difficult to make a good case for its being
a realistic representation of any phenomenon, it serves as a prototype of more
realistic models. It is therefore of interest to investigate this model in detail. The
geometric arguments and computer simulations described here give a reasonably
complete picture of the dynamics of solutions governed by (1).

It was shown here that as m increases from zero, a nontrivial one-period
solution and an accompanying succession of harmonics of it arise. This continues
until the critical value In’-3.57. The value in acts as a threshold of chaos" for
rn > in, the solution set of (1) contains an infinity of distinct periodic solutions.

As rn increases from in, the chaotic solution set successively acquires more
periodic solutions until a value m6 is reached at which solutions of all even periods
are present. Finally, as rn increases from m6 to m3, solutions having successively
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FIG. 6. This shows that the three-period solution branches into a stable harmonic havingperiod six.

In Figs. 5 and 6, the vertical scale begins at 1.0. The deleted parts of the graph describe transient states

which evolve into the stable three- and six-period orbits.

smaller odd periods arise until m3 is reached at which solutions of period three,
and so solutions of all periods, are present. In this sense, solutions of period three
are the last to arise. In particular, the analysis used here suggests that

m2 m22 m23 m23.5 m23.3 m22.5

(m22.3 ( <m2.5<m2.3 ... <m5<m3

The stability properties of these various solutions are quite sensitive to
changes in m. As m increases through the chaotic regime, some new solutions
arising are stable for short m intervals, and some are unstable. Once a new stable
solution arises, a tree of bifurcating harmonics of it arises, as m increases. For
example, the solution of period three is stable for m near m3, and all points near it
are attracted to this orbit under iterations of f. The numerical calculations indicate
that this solution is globally stable, but in the weak sense that the interval (0, 1) less
a set of measure zero is attracted to the three-period orbit. The structure at ms,
m7, etc., is similar. Thus, the term chaotic is not entirely appropriate for describing
the solution set for all m > m.

The analysis carried out here shows that a quite simple deterministic model
can have a solution set having a random structure. This, of course, is just another
illustration of a well-known phenomenon which has been studied by many
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FIG. 7. These data are symmetric aboutx 1/2, and they reflect the known density]’unction [or m 4
which is proportional to Ix(l-x)]-1/z.

investigators. For practical purposes, the solution set should probably be consi-
dered as chaotic for m8 < m < roT, since for most m in this interval, there are either
stable solutions with high period which are difficult to distinguish from chaos, or
no stable periodic solutions. For m7 < m < 4, the solution set is intermittently
dominated by stable low (odd) period solutions and by chaotic behavior.

It is clearly illustrated here that a standard perturbation approach based on
the implicit function theorem does not give a satisfactory description of the
solution set. This approach becomes unmanageable even at m ms, and it cannot
proceed past m. In particular, such methods will not give an indication of the
interesting dynamics in the chaotic regime. The problem considered here is
sufficiently simple to allow extensive use of global methods to derive the threshold
of chaos and some properties of the solution set in the chaotic regime.

The methods and results derived here carry over to equations more general
than (1); for example, f(x) can be replaced by mg(x), where g is a concave
function satisfying g(0)= g(1)= 0. Of course, the critical values of m will change
with different choices of g.

Equation (1) was encountered by Lorenz [3] in modeling atmospheric
turbulence. Explicit calculations of the solution set for 3 <_-m <_-m8 can be found
there. Equation (1) and similar equations have been used in many studies of
population dynamics [1], [4], [8]. A heuristic argument describing the successive
branchings and the corresponding exchanges of stability which occur in the
interval m8 <m <m is given in [4]. Poincar6, Fatou, Julia and many other
mathematicians have studied iterations of this and other functions from other
points of view. After this manuscript was submitted, Dr. I. N. Baker brought to
our attention the work of Myrberg [9] who, with a detailed analysis special to
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iterations of real quadratic polynomials, found the intervals denoted here by
[m.,. me,+1) and the corresponding stable orbits and showed that these intervals
accumulate at m. The methods used in [9] are based on those of Fatou and Julia,
and they are not easily generalized.

Equation (1) has been studied in the chaotic regime from yet another point of
view in [5]. Finally, Ulam [6] derived a regular invariant measure for (1) when
m 4 (this is reflected in Fig. 7) and the case m > 4 has been studied in [7], [ 10].

REFERENCES

1] J. M. GREENBERG AND F. C. HOPPENSTEADT, Asymptotic behavior ofsolutions to a population
equation, this Journal 28 (1975), pp. 662-674.

[2] T-Y. LI AND J. A. YORKE, Period three implies chaos, Amer. Math. Monthly, 1975.
[3] E. N. LORENZ, The woblem of deducing the climate from the governing equations, Tellus 1.6

(1964), pp. 1-1l.
[4] R. M. MAY AND G. F. OSTLER, Amer. Naturalist, to appear.
[5] N. METROPOLIS, M. L. STEIN AND P. R. STEIN, On finite limit sets for tran.sformations on the

unit interval, J. Combinatorial Theory, (A), 1.5 (1973), pp. 25-44.
[6] S. ULAM, A Collection of Mathematical Problems, Interscience, New York.
[7] B. R. HENRY, Escapefrom the unit interval under the transformation x,hx(l- x). Proc. Amer.

Math. Soc. 41 (1973), pp. 146-150.
[8] F. HOPPENSTEADT Vlathematical Theories of Populations: Demographics, Gene:ics and

Epidemics, Conference Board of The Mathematical Sciences, Society for" Industrial emd
Applied Mathematics, Philadelphia, 1.975.

[9] P. Jo MYRBERG, Iteration der reelen Polynome Zweiten Grades II, Ann. Acad. Sci. Fenn. Ser. A
(Math), 268 (I959), pp. 1-13; 366 (1963), pp. 1-18.

10] H. BROLIN, Invariant sets under interaction of rational functions, Ark. Mat., 6 (1965), nOo 6, pp.
103-144.


